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Nonsense-mediated mRNA decay (NMD) is an mRNA

surveillance pathway that ensures the rapid degradation of

mRNAs containing premature translation termination codons

(PTCs), thereby preventing the synthesis of truncated and

potentially harmful proteins. In addition, this pathway regulates

the expression of �10% of the transcriptome and is essential in

mice. Although NMD is conserved in eukaryotes, recent studies

in several organisms have revealed that different mechanisms

have evolved to discriminate natural from premature stop

codons and to degrade the targeted mRNAs. With the

elucidation of the first crystal structures of components of the

NMD machinery, the way is paved towards a molecular

understanding of the protein interaction network underlying this

process.
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Introduction
Nonsense-mediated mRNA decay (NMD) is an evolu-

tionarily conserved mRNA surveillance pathway that

detects and eliminates mRNAs harboring premature

translation termination codons (PTCs) in eukaryotes

[1,2] (see review by Lejeune and Maquat in this issue).

Recently, it has become clear that the NMD pathway not

only degrades aberrant mRNAs containing PTCs as a

result of mutations or errors during transcription or RNA

processing, but is also implicated in regulating the expres-

sion of wild-type transcripts [3] (see review by Lejeune

and Maquat in this issue). Indeed, gene expression profil-

ing of yeast, Drosophila or human cells defective in NMD

has revealed that NMD regulates the expression of �10–

20% of the transcriptome [4�,5��,6].

Two critical steps in the NMD pathway have attracted

much attention in recent years: the mechanism by which
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premature stop codons are recognized and discriminated

from natural stops (PTC definition), and the mechanism

by which PTC-containing mRNAs are targeted for fast

degradation. PTC definition is a translation-dependent

step involving cross-talk between the ribosome stalled at

a stop codon and a downstream cis-acting signal on the

mRNA. This cross-talk leads to the recruitment of trans-
acting NMD factors, the assembly of the surveillance

complex and ultimately the degradation of the mRNA.

Despite conservation of the NMD pathway, the nature of

the cis-acting signals and the decay pathway of targeted

mRNAs vary across species (Figure 1, see below). In this

review, we discuss these mechanistic variations and the

molecular insights to which recent structural studies have

contributed by visualizing some of the interactions that

lead to PTC definition and decay of targeted transcripts.

The conserved core of the surveillance
complex consists of UPF1, UPF2 and UPF3
The key players in the NMD pathway were initially

identified in genetic screens in Saccharomyces cerevisiae
and Caenorhabditis elegans [7–10]. These screens led to the

identification of three yeast (UPF1–3) and seven C. elegans
(smg-1–7) genes that play an essential role in NMD. The

UPF1, UPF2 and UPF3 proteins (known as SMG-2,

SMG-3 and SMG-4 in C. elegans) are core components

of the surveillance complex whose basic function is con-

served in eukaryotes [7–13]. Deletion or silencing of

genes encoding UPF1 and UPF2 results in the stabiliza-

tion of PTC-containing mRNAs in all organisms in which

NMD has been investigated [7–15]. UPF3 is also essen-

tial for NMD in S. cerevisiae, C. elegans and Drosophila; its

role in human cells has been more difficult to assess as two

UPF3 paralogs are expressed (UPF3a and UPF3b; also

known as UPF3 and UPF3X) [2,10,12–14] (see review by

Lejeune and Maquat in this issue).

UPF3 is a predominantly nuclear protein and in human

cells associates with spliced mRNAs through interactions

with components of the exon-junction complex (EJC), a

multimeric protein complex deposited by the spliceo-

some �20–24 nucleotides upstream of exon–exon junc-

tions [14,16,17] (see review by Lejeune and Maquat in

this issue). UPF2 is perinuclear and might associate with

exported mRNAs via interactions with UPF3 and the EJC

[14,16]. The RNA helicase UPF1 is a key component of

the NMD pathway. It has a predominantly cytoplasmic

localization and associates with translation release factors

(i.e. eRF1 and eRF3) and with UPF2 and UPF3, provid-

ing a link between the surveillance complex and the

translation machinery [8,10,11,14,15,18].
www.sciencedirect.com
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Mechanisms of premature translation termination codon (PTC) definition and decay of PTC-containing mRNAs across species. (a) Recognition

of a PTC results from the cross-talk between the terminating ribosome and a downstream cis-acting signal that varies across species [1,2]

(see also review by Lejeune and Maquat in this issue). In yeast, the cis-acting signal could be a downstream sequence element (DSE) or the 30 UTR. In

mammals, the cis-acting signal is an exon–exon boundary. The position of a cis-acting signal is communicated to translating ribosomes by the proteins

that bind to these signals, such as the DSE-binding protein Hrp1p [48], the poly(A)-binding protein (Pab1p) [50��] or components of the EJC

[16,17,32,33�,34�,35–40]. The mechanism by which PTCs are recognized in Drosophila remains to be established, but it does not depend on

exon–exon boundaries. (b) Decay of NMD targets in yeast is initiated by deadenylation-independent decapping followed by 50-to-30 exonucleolytic

digestion by Xrn1p. An alternative pathway involves accelerated deadenylation and exosome-mediated 30-to-50 decay [53�,54�]. Available

evidence indicates that this mechanism is conserved in human cells, although the relative contribution of each pathway has not been

evaluated [55–57]. In Drosophila, decay of NMD targets is initiated by endonucleolytic cleavage in the proximity of the PTC [58�]. The resulting

mRNA fragments are degraded from the newly generated ends by the exosome and XRN1, respectively. This decay pathway is independent of

deadenylation and decapping. In all species, exosome-mediated decay requires the Ski complex.
UPF2 interacts directly with UPF3. The interaction

between human UPF2 and UPF3b has been recently

visualized at the atomic level [19�]. UPF2 consists of

three MIF4G (middle portion of eIF4G) domains,

whereas UPF3 is characterized by a canonical RNP-type

RNA-binding domain (RBD) [19�]. The structure of the

complex between the interacting domains of human

UPF2 and UPF3b shows an unusual mode of protein–

protein interaction involving the third MIF4G domain of

UPF2 and the b-sheet surface of the UPF3 RBD

(Figure 2) [19�]. This b-sheet surface is normally used

by RBD domains to bind nucleic acids. Consistent with

this, the RNA-binding activity of the UPF2–UPF3 com-

plex does not reside within UPF3, but within a conserved

patch of residues on the surface of UPF2 [19�]. The

conservation of the interactions and surfaces implies that
www.sciencedirect.com
the UPF2–UPF3 complex has similar features in other

species.

UPF2 also interacts with UPF1. The UPF1-binding site

has been mapped to the N- and C-terminal regions of

UPF2 [19�,20]. In the UPF2–UPF3 complex, these

regions are likely to be accessible for the interaction with

UPF1, allowing the assembly of the trimeric core of the

surveillance complex. The molecular details of these

interactions await further structural characterization.

Phosphorylation/dephosphorylation cycles
of UPF1 in multicellular organisms
In metazoans, UPF1 has N- and C-terminal extensions

with multiple serine residues that are targets for phosphor-

ylation [11,21]. Regulation of the phosphorylation state of
Current Opinion in Cell Biology 2005, 17:316–325
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A novel mode of protein–protein recognition in nonsense-mediated decay (NMD). Crystal structures of the complex between the interacting

domains of UPF3 and UPF2 dimers [19�], and of the trimeric Y14–MAGO–PYM complex [33�]. UPF3 and Y14 have a canonical RNP-type RBD

found in many proteins involved in RNA metabolism. In both complexes, a novel mode of RBD-protein interaction is observed in which

the RBDs engage their b-sheet surface to bind a protein partner instead of binding RNA.
UPF1 involves four additional proteins (SMG1,5,6,7) that

were identified as essential NMD factors in C. elegans [21–

26,27�,28�,29]. With the exception of SMG7, these pro-

teins are conserved in metazoa [13,29].

Phosphorylation of UPF1 is catalyzed by SMG1, a phos-

phoinositide-3-kinase-related protein kinase [11,21,24–

26]. The dephosphorylation of UPF1 is mediated by

SMG5, SMG6 and SMG7, three similar but non-redun-

dant proteins [11,23,27�,28�,29]. SMG5, SMG6 and

SMG7 are not phosphatases themselves, but are thought

to trigger UPF1 dephosphorylation by recruiting protein

phosphatase 2A (PP2A). This model arises from the

observation that SMG5 and SMG7 interact with each

other and are part of a larger complex comprising phos-

phatase PP2A and phosphorylated UPF1 [27�,28�]. Simi-

larly, SMG6 has been shown to be part of a protein

complex comprising PP2A and phosphorylated UPF1

[29], although it is unclear whether this complex also

contains SMG5 and SMG7.

Recently, it has been shown that the structure of the N-

terminal domain of SMG7 resembles that of 14-3-3, a

phosphoserine-binding protein involved in signal trans-

duction pathways (Figure 3) [30��]. The similarity

between SMG7 and 14-3-3 is not limited to the fold of

the polypeptide backbone, but residues that line the

phosphoserine binding pocket of 14-3-3 are conserved

at the corresponding pocket of SMG7, suggesting that

SMG7 functions as a phosphoserine-binding protein.

Indeed, SMG7 binds UPF1 in a phosphorylation-

dependent manner and mutation of residues in its

14-3-3-like phosphoserine-binding site impairs UPF1

binding [30��]. These studies suggest a molecular
Current Opinion in Cell Biology 2005, 17:316–325
mechanism by which SMG7 specifically interacts with

the phosphorylated form of UPF1. The relevance of this

observation in the context of NMD is discussed below.

The 14-3-3-like domain of SMG7 comprises several TPR

repeats that had been previously identified on the basis of

sequence alignment as the hallmark for SMG5, SMG6 and

SMG7 [13,23,27�,28�,29,30��,31]. The high level of con-

servation suggests that SMG5 and SMG6 also contain a

14-3-3-like domain with a conserved binding site for phos-

phoserine residues. SMG5 and SMG6 also share an addi-

tional similar C-terminal domain, which in both cases is

predicted to structurally resemble a PIN domain [31].

Although PIN domains are often present in proteins with

nuclease activity [31], the role of this domain in the context

of the SMG5 and SMG6 proteins remains rather enigmatic.

PTC definition in mammals: the exon
junction complex
In mammals, recognition of premature stop codons results

from the cross-talk between terminating ribosomes and a

downstream EJC comprising UPF3 and UPF2 [1,2] (see

review by Lejeune and Maquat in this issue). According

to the current model, if translating ribosomes encounter a

stop codon upstream of an EJC, UPF1 is recruited by

translation release factors and interacts with the UPF2

and UPF3 proteins bound to the downstream EJC. This

event would create an opportunity for the assembly of an

active surveillance complex consisting of UPF1, UPF2

and UPF3 and possibly other proteins [1,2] (see review by

Lejeune and Maquat in this issue).

In addition to UPF3, other components of the EJC have

been implicated in PTC definition. These include
www.sciencedirect.com
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SMG5–7 have a 14-3-3-like phosphoserine-binding site. The crystal structure of the N-terminal domain of human SMG7 shows an almost

completely a-helical molecule with an unexpected structural homology to 14-3-3, a signal transduction protein that binds phosphoserine-

containing polypeptides [30��]. In red, a sulfate ion from the crystallization medium is shown. Coordination of the sulfate ion occurs at the

equivalent structural position of phosphate groups in 14-3-3. Below is a schematic drawing of SMG7, SMG5 and SMG6, with their 14-3-3-like

domains and PIN domains highlighted [30��,31]. The unique SMG7 C-terminal domain and SMG6 N-terminal domain are represented

as rectangles.
RNPS1, Y14 and MAGO, all of which have been shown to

elicit mRNA decay when bound downstream of a stop

codon [32,33�,34�]. Y14 and MAGO form a heterodimeric

complex that acts as a single functional unit in NMD

[33�]. The structure of the Y14–MAGO heterodimer has

shown that the interaction with MAGO is mediated by

the RNA-binding domain (RBD) of Y14, with an overall

mode of protein–protein recognition similar to that

described above for the UPF2–UPF3 complex

(Figure 2) [33�]. Analogous to the UPF3 RBD, the

RBD of Y14 does not bind RNA in vitro [33�]. Assembly

of the Y14–MAGO binary complex leads to the formation

of an extensive surface that is lined by conserved residues

belonging to both components of the heterodimer. This
www.sciencedirect.com
surface functions as a platform for additional protein–

protein interactions [33�].

The search for Y14–MAGO interaction partners has led

to the identification of the proteins PYM (partner of Y14

and MAGO), eIF4AIII and Barentsz (Btz, also known as

MLN51) as additional components of the NMD

machinery [35–40]. In human cells, eIF4AIII is a com-

ponent of the EJC and, similarly to Y14-MAGO, associ-

ates with spliced mRNAs in the nucleus [36–38]. By

contrast, both Barentsz and PYM are shuttling proteins

with a predominantly cytoplasmic localization [35,39,

40], possibly joining the complex only after nuclear

export.
Current Opinion in Cell Biology 2005, 17:316–325
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PYM interacts directly with Y14–MAGO by contacting

both components of the heterodimer (Figure 2) [35].

From the structure of the ternary PYM–Y14–MAGO

complex, it is clear that PYM binds to a relatively small

portion of the Y14–MAGO surface (Figure 2), suggesting

that additional binding partners such as Barentsz and

eIF4AIII might be able to access the heterodimer simul-

taneously. The precise mechanisms by which PYM,

eIF4AIII and Barentsz participate in NMD remain to

be established.

Interestingly, despite conservation of their molecular

interactions, the Drosophila orthologs of Barentsz,

eIF4AIII, Y14 and MAGO are dispensable for NMD

[13,39,41]. Instead, these proteins are required for the

proper localization of oskar mRNA to the posterior pole of

the Drosophila embryo [42–46]. Thus, these proteins and

the additional components of the EJC might have been

co-opted by the NMD machinery during evolution. Some

components of the EJC may have acquired a role similar

to that of UPF2 or UPF3, providing an explanation for the

observation that the requirement for UPF2–UPF3 inter-

action is bypassed under some experimental conditions in

human cells [34�].

PTC definition in yeast and Drosophila occurs
independently of exon boundaries
As mentioned above, although several components of the

human EJC are conserved in Drosophila and are involved

in post-transcriptional mRNA metabolism, they do not

play a role in PTC definition or NMD [13]. Indeed, in

both Drosophila and S. cerevisiae, PTC definition occurs

independently of exon–exon boundaries [1,2,13] (see

review by Lejeune and Maquat in this issue). This is

consistent with the observation that PTC-containing

mRNAs transcribed from intronless genes are subjected

to NMD in yeast and Drosophila [1,2,13]. What differ-

entiates a premature termination codon from a natural

one in these organisms? In yeast, some mRNAs have

been shown to harbor loosely defined downstream

sequence elements (DSEs) with a function analogous

to that of mammalian exon–exon junctions (Figure 1)

[1,2,47] (see review by Lejeune and Maquat in this

issue). The protein Hrp1p has been shown to bind this

element [48]. However, the lack of a strong consensus

among yeast DSEs suggests that multiple cis-acting

sequence elements and trans-acting binding factors

may exist.

Alternatively, it is possible that a generic feature of the

mRNA, such as the poly(A)-tail or a mark deposited

during the cleavage and polyadenylation reaction, pro-

vides the positional information needed to discriminate

premature from natural stop codons in yeast and

Drosophila. This possibility is consistent with the pro-

posed model that the process of premature translation

termination is intrinsically aberrant, because the stop
Current Opinion in Cell Biology 2005, 17:316–325
codon is not in the appropriate context [49,50��]. Accord-

ing to this model, 30 untranslated regions (UTRs) would

be marked by a specific set of proteins. If a terminating

ribosome is able to interact with these 30 UTR-bound

proteins, proper termination can occur. If the termination

process is impaired or too slow, as a result of the inability

of the terminating ribosome to establish these interac-

tions, the NMD complex may be assembled, leading to

the rapid degradation of the mRNA.

This model has recently received strong support in yeast

[50��]. It was shown that translation termination is aber-

rant at premature stop codons and that prematurely

terminating ribosomes fail to release efficiently. This

effect is abolished in strains lacking Upf1p or if the

nonsense codon is flanked with a normal 30 UTR. More-

over, tethering the poly(A)-binding protein (Pab1p)

downstream of the PTC, which mimics a normal 30UTR,

leads to efficient translation termination and abolishes

NMD [50��]. It would be of interest to determine whether

this model also accounts for PTC recognition in Drosophila
and mammals. In the latter case, the presence of EJC

proteins bound downstream of a stop codon may interfere

with proper translation termination.

Degradation of PTC-containing mRNAs:
XRN1, the Ski complex and the exosome
Independent of the mechanism by which PTCs are

defined, once the mRNA is recognized as being aberrant,

its degradation is mediated by the enzymes that are

involved in general mRNA decay. In eukaryotic cells,

general mRNA degradation is initiated by shortening of

the poly(A)-tail by deadenylases [51]. Following this first

rate-limiting step, mRNAs can be degraded via one of two

pathways. In one pathway, deadenylation triggers decap-

ping, and this exposes the mRNA body for digestion by

the major cytoplasmic 50-to-30 exonuclease XRN1. Decay

of mRNAs through this pathway is thought to occur in

specialized cytoplasmic bodies or mRNA decay foci (also

known as P-bodies or GW-bodies) that are enriched in

XRN1, the decapping enzymes DCP1 and DCP2 and

decapping co-activators such as the LSm1–7 complex (see

review by Fillman and Lykke-Anderson in this issue). In

the second mRNA decay pathway, deadenylation is fol-

lowed by 30-to-50 degradation of the transcript. This

requires the exosome (a multimeric assembly of 30-to-50

exonucleases) and the Ski complex, a trimeric protein

complex that regulates exosome activity [51].

The enzymes and co-activators involved in general

mRNA decay also function in NMD. In S. cerevisiae,
the major decay pathway for NMD substrates involves

removal of the cap structure by the decapping enzymes

Dcp1p/Dcp2p and decapping co-activators such as the

LSm1–7 complex. Following decapping, the body of the

transcript is exposed to 50-to-30 degradation by Xrn1p

(Figure 1) [52,53�,54�]. Thus, one function of the
www.sciencedirect.com
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surveillance complex is to bypass deadenylation, the rate-

limiting step in mRNA decay, and to directly promote

decapping. An alternative pathway, which also contri-

butes to the decay of PTC-containing mRNAs, relies

on the accelerated deadenylation and 30-to-50 degradation

by the exosome and the Ski complex (Figure 1) [53�,54�].
Decay of NMD substrates in mammals has been shown to

occur by a similar exonucleolytic mechanism [55–57].

Unexpectedly, degradation of nonsense transcripts in

Drosophila was found to be initiated by endonucleolytic

cleavage in the vicinity of the PTC (Figure 1). The

resulting 50 fragment is rapidly degraded from its 30-
end by the exosome in a process that also requires

components of the Ski complex. The 30 fragment is

degraded from its free 50 end by XRN1 [58�]. Thus,

the mRNA fragments are degraded from the newly

generated ends without undergoing decapping or dead-

enylation, suggesting that, in contrast to yeast and mam-

mals, the decapping enzymes, the LSm1–7 complex and

deadenylases are not required for NMD in Drosophila
[58�].
Figure 4
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From PTC recognition to mRNA degradation
in metazoa
What is the molecular mechanism that leads from the

recognition of a PTC and assembly of the surveillance

complex to the recruitment of mRNA decay enzymes? A

hint on how the decay enzymes are recruited to NMD

targets in mammals comes from studies on the cellular

localization and function of the SMG5–7 proteins [59].

When overexpressed, SMG7 accumulates in cytoplasmic

foci corresponding to endogenous P-bodies. Overexpres-

sion of SMG7 also causes the accumulation of SMG5 or

UPF1 in P-bodies, and this requires both the N-terminal

and C-terminal domains of SMG7.

Consistent with its localization in P-bodies, full-length

SMG7 is able to elicit mRNA decay when tethered to a

reporter transcript. This activity resides within the C-

terminal domain of SMG7. The 14-3-3-like domain of

SMG7, by contrast, is not required to elicit mRNA decay

when SMG7 is artificially tethered to the transcript [59].

These observations indicate that SMG7 has two func-

tional domains: an N-terminal domain with a 14-3-3-like
ination event
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result of a premature translation termination event leads to the

MG7 then targets the bound mRNA for decay via its C-terminal

uits PP2A, resulting in UPF1 dephosphorylation and dissociation

s for a new round of NMD [27�,28�,30��,59].

Current Opinion in Cell Biology 2005, 17:316–325



322 Nucleus and gene expression
fold that interacts with phosphorylated UPF1 (and has

also been shown to interact with SMG5), and a C-terminal

domain that targets bound mRNAs for decay [27�,28�,59].

Thus, the modular domain organization of SMG7 pro-

vides a molecular link between the NMD and the mRNA

degradation machineries.

The combination of the structural and functional studies

described above suggests a model for how changes in the

phosphorylation state of UPF1 are coupled to the degra-

dation of PTC-containing transcripts (Figure 4). In this

model, recognition of a PTC leads to the assembly of the

surveillance complex on the aberrant mRNA and the

phosphorylation of UPF1. Phosphorylated UPF1 recruits

SMG7 (most likely in a complex with SMG5 and PP2A)

[27�,28�,30��]. SMG7 then targets the PTC-containing

transcript for decay [59]. The association of SMG7, SMG5

and PP2A would also trigger the dephosphorylation of

UPF1, and this event might be involved in recycling of

the NMD factors for another round of targeting. It is

currently unclear whether decay of targeted transcripts,

UPF1-dephosphorylation and dissociation of the surveil-
Figure 5
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lance complex from the mRNA occurs in the cytoplasm or

whether the entire surveillance complex escorts the

mRNA to P-bodies, where it undergoes decapping and

rapid 50-to-30 decay.

Although this model is consistent with available data in

human cells, it represents an oversimplification of the

NMD pathway, as there are many observations that

remain unexplained. For instance, what is the role of

SMG6 in this pathway? Are P-bodies sites of decay for

NMD substrates? What are the mechanisms connecting

the surveillance complex to the mRNA decay enzymes in

yeast cells, which lack SMG1 and SMG5–7 orthologs?

How are the decay enzymes recruited to NMD substrates

in Drosophila cells, which appear to lack a SMG7 ortholog?

What is the identity of the Drosophila endonuclease and

how is it recruited to nonsense transcripts?

Conclusions and perspectives
NMD factors have been identified by genetic screens in S.
cerevisiae or C. elegans and more recently by biochemical

approaches in human cells. Although there are certainly
AGO
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Ski complex
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for which experimental evidence for a role in NMD is available are

me, the Ski complex and the LSm1-7 complex). Note that links do not

etails of these interactions are known. The EJC proteins are linked
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more factors to be discovered, the complexity of the

protein interaction network involved in NMD is already

emerging (Figure 5). Moreover, investigations of the

NMD pathway across species suggest that the complex-

ity of the network increases from simpler organisms such

as S. cerevisiae to humans by the introduction of additional

nodes and links. To dissect the molecular interactions

underlying this network and to decipher how it is con-

nected to other cellular processes and how it evolved

remains a challenge.

Gene expression profiles in cells deficient for NMD have

demonstrated that this pathway regulates the expression

of various classes of wild-type transcripts. The identifica-

tion of endogenous targets provides relevant information

on the cellular processes that are likely to be regulated by

NMD. An important goal for the future is to understand

how the regulation of these endogenous targets leads to

the complex phenotypes observed at the cellular level.

For example, Drosophila cells depleted of UPF1 arrest at

the G2/M-phase of the cell cycle (Rehwinkel and Izaur-

ralde, unpublished). How does the NMD pathway

impinge on the cell cycle? The ultimate challenge will

be to apply the insights gained at the molecular and

cellular levels to the organism level to understand, for

instance, why UPF1 is essential in mice, but not in S.
cerevisiae or C. elegans [60].
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